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Abstract

Proposal-based methods have achieved great success in
various tasks. A general principle is that predictions are
made within proposals, which could introduce problems of
incomplete prediction and wrong prediction. While expand-
ing the proposal can alleviate these problems, we show
that directly performing inference on the expanded proposal
could be harmful and causes an ambiguity issue. This is
due to the violation of the “one proposal-one instance” as-
sumption. In this paper, we propose a new attention module
to address the crucial ambiguity problem in a simple yet ef-
fective way. It is achieved by predicting an indicator, which
is an attention map, to specify the target object in the ex-
panded proposal. Moreover, this module can be readily in-
corporated into existing proposal-based methods, enabling
them to fully leverage the benefit of expanding the proposal.
We apply our module to a popular proposal-based frame-
work Mask R-CNN and observe a significant performance
boost. Experiments on the challenging COCO instance seg-
mentation task and pose estimation task demonstrate the ef-
fectiveness and generality of the proposed method.

1. Introduction
Proposal-based methods have achieved great success in

recent years, yielding impressive improvements on many
computer vision tasks. For example, Mask R-CNN [15] and
PANet [25] achieve state-of-art performances on the chal-
lenging COCO [23] instance segmentation task. In the field
of multi-person pose estimation, new records are frequently
being set by proposal-based methods [29, 9, 5] too.

The spirit of these methods is to separate the object de-
tection and specific prediction task into two stages. The
two-stage design greatly simplifies the problem at hand and
allows an easy utilization of progress made in both fields.
Moreover, the performance can be further improved by
multi-task learning [15].

Although the assumption of “one proposal is one in-

(a) Incomplete prediction (b) Wrong prediction

Figure 1: Illustration of the failure cases. (a) A case of
incomplete prediction, where the proposal is imprecise and
the resulted predictions are not complete; (b) An example of
wrong prediction, where the mask network falsely activates
some region of the wrong instance within the proposal.

stance” implied in these methods makes it reasonable to
only perform inference within the proposal, two impor-
tant problems arise. The first one is incomplete prediction
caused by inaccurate bounding box detection, as illustrated
in Figure 1(a). We observe that in many cases, the proposal
manages to cover the majority of the object but fails to pre-
cisely locate its boundary. As a result, the prediction is not
complete and misses out on some parts of the object. The
problem becomes more severe when the predictions inside
the bounding box are mutually influential. For example, in
pose estimation, missing out on the ankle could influence
the detection of the knee.

The second problem is the wrong prediction problem, as
shown in Figure 1(b). The network falsely activates regions
that belong to other instances within the proposal. This
problem is caused by the existence of multiple instances in
one bounding box, which violates the basic assumption of
“one proposal-one instance”. In these cases, it’s difficult for
the network to decide which one is the target object, so in-
stead it adopts a more conservative strategy – activate them
all. When occlusion happens, the problem becomes more
serious.

Expanding the proposal is a promising approach to ad-
dress these problems. Firstly, expanding the proposal to a
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sufficiently large scale can ensure the coverage of the entire
object, therefore solving the incompleteness issue. Addi-
tionally, it introduces more context information, which is
helpful for addressing the wrong prediction problem. For
example, in the case of Figure 1(b), if we can observe the
entire body of the person on the right, the network might
be able to realize that the falsely activated regions belong to
that person and manage to correct the error.

Though it sounds appealing, performing inference on the
expanded proposal is risky and possibly more harmful. As
the proposal enlarges, the chance of containing multiple ob-
jects in one proposal also increases, therefore reintroducing
the wrong prediction problem. Previous methods [9, 5] that
adopt this schema have to carefully choose the expanding
scale in order to balance the “incompleteness v.s. ambi-
guity” trade-off. Extra human engineering effort is usually
required to obtain a reasonable result.

Rather than this naive expansion strategy, in this paper,
we propose a rather simple yet effective method to address
the challenging ambiguity issue. Our main contribution is
to predict an indicator for the expanded proposal, which
functions like an attention map to specify the target object
within the expanded proposal.

Our indicator is generated by a novel attention module,
named the TOP (Target Of the Proposal) module. It first
predicts a target object from the local proposal, and then dif-
ferentiates it from the context information of the expanded
proposal. With this module, inference on the expanded
proposal becomes feasible without causing extra ambigu-
ity. Moreover, this module can be readily incorporated into
any existing proposal-based frameworks to fully leverage
the benefit of inference on larger-size proposals.

One example is to incorporate our module in the pop-
ular Mask R-CNN [15]. The new pipeline, which we call
TOPNet, can effectively perform inference on the expanded
proposal, thus greatly relieving the incomplete prediction
and wrong prediction problems.

To demonstrate the effectiveness of our method, we con-
duct experiments on the challenging COCO [23] instance
segmentation task and keypoint detection task. Without
bells and whistles, we obtain substantial improvement over
the Mask R-CNN baseline (1.2 mAP on instance segmen-
tation and 1.9 mAP on keypoint detection). Moreover, our
design is general and we expect to see improvements on
other proposal-based methods too.

To summarize, our contributions are as follows:

• We propose a simple yet effective method which en-
ables proposal-based framework to perform inference
on the expanded proposal.

• We present a novel attention module, namely TOP
module, to address the crucial ambiguity problem
when expanding the bounding box.

• Our method significantly eases the incomplete and
wrong prediction problems in proposal-based frame-
works. Experiments on the COCO [23] instance seg-
mentation and pose estimation sets demonstrate the ef-
fectiveness of our method.

2. Related Work
Proposal-based Framework in Object Detection The
proposal-based framework was first proposed for object
detection. R-CNN [13] utilized Selective Search [36] to
enumerate object proposal regions and used convolutional
neural network (CNN) [20, 35] to classify them. Fast R-
CNN [12] and SPPNet [16] made the pipeline more efficient
by extracting the entire feature map for the input image.
Proposal-specific features were pooled from this global fea-
ture map. As a result, much computation was shared by pro-
posals. Faster R-CNN [33] has the region proposal network
(RPN) to generate object proposals in neural networks, not
only leading to better accuracy, but also increasing the speed
of entire framework. R-FCN [8] further shared computa-
tion by making nearly all computation fully convolutional.
Each proposal just needs to pool the score from one global
score map. Recently proposed FPN [22] modified the net-
work structure for better feature representation and assigned
proposals to appropriate scales for better performance. Cas-
cade R-CNN [2] is a new method, which analyzed the prop-
erty of localization quality of object proposals and enhanced
the accuracy of the framework by sequentially refining pro-
posals. The context information was not used in this frame-
work.

Instance Segmentation The majority of instance seg-
mentation methods follow the proposal-based framework.
SDS [14], CFM [6] and MNC [7] are direct extensions of
R-CNN, SPPNet and Faster R-CNN respectively. Instead
of using box proposals, those methods took mask propos-
als as input for classification. Specifically, mask proposals
were generated by fully-connected layers in MNC, inspired
by DeepMask [30]. As a result, each output is with pixel-
wise mask and corresponding class label. Mask R-CNN
[15] extended FPN by introducing a parallel mask predic-
tion branch, which is a small fully convolutional neural net-
work (FCN). The decomposition of classification and seg-
mentation helps the network produce decent segmentation
results. More recently, PANet [25] enhanced the network
structure to achieve better performance.

There are some other methods for instance segmentation.
Most of them aimed at designing representations to decode
instance masks. For example, DWT [1] learned the energy
with respect to boundaries and applied watershed algorithm
to generate the instance mask. SGN [24] and InstanceCut
[19] both learned instance boundaries and further decoded
instance masks from them. Embedding is learned in [10, 27]



to map pixels belonging to the same instance close to each
other in the learned embedding space. Recurrent neural
network was also used for instance segmentation [34, 32]
where there is still much room to improve performance.

Multi-person Pose Estimation The field of multi-person
pose estimation has achieved huge improvements in recent
years. DeepCut and DeeperCut [31, 17] used Faster R-CNN
to detect human parts and then grouped them into individual
person by integer programming. [3] proposed PAF to model
the connection between joints and used it for grouping. [28]
predicted a tag for each joint and assembled the joints with
similar tag to be an instance. Different from these bottom-
up methods, proposal-based frameworks operated in a top-
down manner. [29, 9, 5] used an object detector to first de-
tect human instances and then applied single person pose
estimation algorithm to these proposals. [15] extended the
Mask R-CNN framework by replacing masks with keypoint
heatmaps and achieved competitive results. Our method is
closer to the proposal-based methods, but we allow predic-
tion to be made outside the proposal.

Larger Context Region In object detection, using larger
regions can help capturing more context information and
help making correct prediction. For example, [39] tried to
utilize context by directly expanding proposals but didn’t
consider the potential ambiguity issue. [11, 37, 38] lever-
aged context by first pooling multi-scale feature grids from
regions with different scales and then combining them to
be the final feature used by the following classification and
regression sub-networks. However, their methods lose the
spatial relationship between the local proposal and the ex-
panded proposal, while our method can well preserve that
information. [21] worked by iteratively expanding propos-
als and refining outputs, which was much less efficient than
our feedforward method.

3. Method

In this paper, we aim to fully leverage the benefit of per-
forming inference on the expanded proposal, which reduces
to two subtasks: indicating the target object and making
prediction on the expanded proposal. The first task is tack-
led by the TOP module. The second task is accomplished
by using the output of the TOP module.

We organize this section as follows: first we introduce
some notations in Section 3.1. Then we present the TOP
module in detail in Section 3.2. In Section 3.3, we show
how to augment existing proposal-based methods with the
TOP module to form a TOPNet which allows inference on
the expanded proposal. The inference and training algo-
rithms for the TOPNet are also presented.

3.1. Notation

In the beginning, we introduce notation used in this
paper. We represent the local proposal as Bl =
(xtl

l , y
tl
l , x

br
l , ybrl ), where (xtl

l , y
tl
l ) and (xbr

l , ybrl ) are lo-
cations for top-left corner and bottom-right corner respec-
tively. Its size is denoted by Hl ×Wl. The expanded pro-
posal Be is represented by (xtl

e , y
tl
e , x

br
e , ybre ) where its size

is denoted as He × We. It shares the same center as Bl,
but is k times larger. The indicator is denoted as I, with
resolution HI ×WI .

3.2. TOP Module

The TOP module is an attention module whose goal is to
identify the target object within the expanded proposal. We
notice that in many cases, the local proposal usually con-
tains only one object; even if it includes multiple objects, a
dominant one usually exists. In other words, although the
target object is very ambiguous in the expanded proposal,
it’s actually quite clear in the local proposal. If we can take
advantage of this knowledge, we can clearly specify the tar-
get object within the expanded proposal and thus address
the ambiguity issue.

Therefore, we adopt the design illustrated in Figure 2 for
the attention module. First of all, we predict the target ob-
ject from the local proposal. Then, we differentiate it from
the context information introduced by expanding the bound-
ing box. The resulting output, which is an attention map,
can clearly indicate the target object within the expanded
proposal.

Local Box B!

Network N Output T

Indicator 
IExpanded Box B"

A
ffi

ne
 

Tr
an

sf
or

m
at

io
n

Resize

Region Z

Figure 2: The TOP module work flow. First we predict the
target object T within the local proposal. Then we compute
the region Z in I that corresponds to the local proposal and
resize T to fill Z , padding the rest of I with 0.

Predicting the target object. We first predict the target
object from the local proposal. The target object can be rep-
resented in different forms, depending on the specific task.
For example, we use object mask for instance segmentation,
and keypoint score map for pose estimation. No matter the
structure, for each local proposal Bl, we use a network N to
predict the target object within Bl. The output T is assumed
to be a map-like tensor with resolution HT ×WT .



Indicator I

Feature X!

prediction
branch

TOP
modulebackbone

Feature Map

RoIAlign

RoIAlign

Means Concat

Local Box

Expanded Box

Figure 3: Pipeline for TOPNet. First, for each local proposal (yellow box), we use the TOP module to predict an indicator
I. Then we expand the proposal (orange box) and pool a feature Xe from the feature map. The pooled feature Xe is then
concatenated with the indicator I and fed into the prediction branch to obtain the final prediction.

Generating the indicator. As illustrated in Figure 2, we
generate the indicator I as follows. First, we compute a
region Z in I that corresponds to the local proposal. The
boundary of Z can be obtained by an affine transformation
and the affine matrix M is defined as

M =

[
sx 0 −sx · xtl

e

0 sy −sy · ytle

]
, (1)

where sx = WI/We and sy = HI/He. And the boundary
Bz is given by[

xtl
z

ytlz

]
= M

xtl
l

ytll
1

 ,

[
xbr
z

ybrz

]
= M

xbr
l

ybrl
1

 . (2)

Then, we resize T to the same size as Z by bilinear inter-
polation [18] and use it to fill Z . For the rest of I, we fill
them with 0.

Note that the indicator I generated in this way can well
distinguish the target object from the context information.
Moreover, the spatial relationship between the local pro-
posal and the expanded proposal is preserved, so even if
the prediction on the local proposal is not correct, e.g. the
wrong prediction cases, we can still know the target object
as long as there is a dominant one. This is because the
non-dominant object will have many zeros on the indica-
tor, while the dominant one does not, so the target object is
still clear.

3.3. TOPNet

In this section, we show how to incorporate the TOP
module into existing proposal-based frameworks. The aug-
mented framework, which we call TOPNet, allows infer-
ence on the expanded proposal. Here we only use Mask

R-CNN [15] as an example, but the design is general and
should be applicable to other methods too.

Mask R-CNN. We start by a brief introduction of the
Mask R-CNN [15] framework. It’s a conceptually simple
two-stage framework, where the first stage generates a set
of candidate proposals and the second stage performs infer-
ence on these proposals. The first stage is a region proposal
network (RPN) proposed by [33]. The second stage con-
sists of three branches, a classification branch for classify-
ing object category, a box branch for regressing the bound-
ing box boundary, and a mask branch to predict the object
mask within the proposal.

TOPNet. Different from Mask R-CNN [15], TOPNet
performs inference on the expanded proposal. An illustra-
tion of the TOPNet is shown in Figure 3. Apart from the
box branch and classification branch, it has a TOP module
to specify the target object and a prediction branch to per-
form inference on the expanded proposal.

TOPNet can be readily extended from the Mask R-CNN
framework [15]. Specifically, we use the mask branch in
Mask R-CNN as the network N in the TOP module, since
the object mask can well represent the target object within
the local proposal. We further add an extra prediction
branch in parallel with the box branch and classification
branch to perform inference on the expanded proposal.

Inference. The inference stage of TOPNet consists of two
steps. First, for each proposal, the TOP module generates
an indicator I to specify the target object. Then the predic-
tion branch combines the indicator with the feature from the



expanded proposal to perform inference. Since it’s straight-
forward to obtain I by running the TOP module, we focus
the discussion on the second step.

Specifically, we extract a feature Xe from the expanded
proposal Be using the RoIAlign operation. The resolution
of Xe is set to HI ×WI in order to match the resolution of
the indicator I. Then we concatenate Xe with I and feed
the concatenated feature into the prediction branch to obtain
the prediction on the expanded proposal.

We explain why a simple concatenation works here.
From the input’s perspective, the feature Xe contains all in-
formation of all objects within the expanded proposal Be,
and the indicator I highlights the target object in Be, so a
simple concatenation of both is sufficient to generate an in-
put that has no ambiguity but covers all necessary informa-
tion in order to make the correct prediction. Fusing them in
a more complex way could possibly get better performance,
but that’s beyond the scope of this paper.

Training. Our framework can be trained in an end-to-
end manner using standard back-propogation algorithms.
Specifically, the loss L for each proposal is defined as
L = Lcls + Lbox + Le

mask, similar to the multi-task loss
in [15]. The classification loss Lcls and the box localization
loss Lbox are the same as those in [12, 33]. The mask loss
Le
mask is the average binary cross entropy loss between the

predicted mask and the binary mask label. Note that Le
mask

is the mask loss on the expanded proposal and the e super-
script denotes the expanded proposal.

In the above formulation, because the TOP module is
fully differentiable, T can be automatically learned using
gradients from the final mask loss Le

mask. However, we
empirically found applying an auxiliary loss for T can yield
better performance. This is probably because the automat-
ically learned T may not indicate the target object well, so
the indicator becomes somehow ambiguous. By introduc-
ing the auxiliary loss, we impose constraints on T so that I
becomes clearer and leads to better performance.

The precise form of the auxiliary loss depends on the
specific task. For example, in the instance segmentation
task, we require T to predict the object mask within the
local proposal, so the auxiliary loss is Ll

mask and the l su-
perscript denotes the local proposal. After introducing the
auxiliary loss, the final loss for our framework is

L = Lcls + Lbox + Le
mask + Ll

mask

4. Experiments
We conduct experiments on the instance segmentation

task and pose estimation task to demonstrate the effective-
ness of our method. Both tasks can be formulated as prob-
lems that require bounding box detection, thus can be ad-

dressed by proposal-based methods. We start by intro-
ducing the instance segmentation experiment and then talk
about the human pose estimation experiment.

4.1. Instance Segmentation

We apply our method to the challenging instance seg-
mentation task. Experiments are carried out on the COCO
[23] instance segmentation set and results are evaluated
against the standard COCO metrics. We adopt Mask R-
CNN [15] as our baseline, which is a strong and popular
framework in instance segmentation.

Dataset. COCO [23] instance segmentation dataset is one
of the most challenging datasets in instance segmentation.
Complex scenes and frequently occurring occlusions make
it extremely difficult to achieve good performance on this
dataset. The training set (train-2017) consists of roughly
115k images and the validation set (val-2017) holds about
5k images. The annotations for these two sets are provided.
The testing images are divided into two subsets, the test-dev
for development purposes and the test-challenge for chal-
lenge purposes only. They both hold 20k images and their
annotations are not available.

Implementation Details. All models are trained on train-
2017 and evaluated on val-2017 and test-dev. The training
settings are the same as in Mask R-CNN [15]. Specifically,
we use 8 GPUs to train the network. The batch size for each
GPU is 2, so the total batch size is 16. For each image, we
sample 512 regions-of-interest (RoIs) from the RPN pro-
posals and set the ratio between positive and negative pro-
posals to 1:3. The models are trained with 90k iterations in
total. The learning rate starts from 0.02 and decreases 10
times at iteration 60k and 80k.

The details for TOPNet are as follows. We set the ex-
panding scale to 2, so the expanded proposal is twice as
large as the local proposal. For the TOP module, the net-
work N consists of a RoIAlign layer and four 3 × 3 con-
volutional layers with 256 channels and a deconvolutional
layer. The output resolution of the RoIAlign layer is 14×14
and the resolution of the indicator is 28× 28.

The prediction branch consists of a RoIAlign layer and
eight 3×3 convolutional layers with channels 256 as well as
a deconvolutional layer. The output resolution of RoIAlign
is 28×28; the resolution of final prediction is 56×56. Note
that the RoIAlign output resolution here is twice as large as
the one in the TOP module due to the expansion ratio.

Results We compare our method with state-of-the-art al-
gorithm Mask R-CNN [15] on the test-dev and val-2017
subsets. Results under the standard COCO metrics are re-
ported in Table 1. We observe consistent improvements
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Figure 4: Qualitative comparisons between our method and Mask R-CNN baseline. Our method can effectively utilize
context and corrects some cases where the original Mask R-CNN fails.

test-dev backbone AP AP50 AP75 APS APM APL

Mask R-CNN ResNet-50-FPN 34.2 56.4 36.0 14.8 36.0 49.7
Mask R-CNN ResNet-101-FPN 35.9 58.5 38.0 15.9 38.2 51.8
Ours ResNet-50-FPN 35.4 56.4 37.8 15.3 37.0 51.9
Ours ResNet-101-FPN 37.0 58.6 39.6 16.3 38.9 54.0

(a) Results for test-dev

val-2017 backbone AP AP50 AP75 APS APM APL

Mask R-CNN ResNet-50-FPN 33.9 55.8 35.8 14.9 36.3 50.9
Mask R-CNN ResNet-101-FPN 35.9 58.3 38.0 15.9 38.9 53.2
Ours ResNet-50-FPN 35.4 56.3 37.8 15.8 37.6 53.5
Ours ResNet-101-FPN 37.1 58.4 39.6 16.9 39.8 55.7

(b) Results for val-2017

Table 1: Results on the COCO test-dev and val-2017 subsets.

over Mask R-CNN with different backbones (1.5 mAP on
ResNet-50-FPN and 1.1 mAP on ResNet-101-FPN). The
improvements mainly come from the benefit of inference on
the expandped proposal. Note that our method is orthogonal
to the development of backbone network and could achieve
better performance when a stronger backbone network is
employed.

Moreover, the improvement at a high IoU threshold is
much larger than that at a low threshold (2.0 point for AP75

vs. 0.5 point for AP50). This is because under a low thresh-
old, even the wrong predictions could be treated as correct.
With a relatively high threshold, contrarily, wrong predic-
tions are more easily eliminated. We thus advocate that high
IoU threshold benefits from our strategy.

Qualitative Results We provide qualitative comparisons
between our method and the Mask R-CNN baseline in Fig-

ure 4. Mask R-CNN may fail when multiple instances ap-
pear in one proposal and the activation is on the wrong ob-
ject. Our method effectively ameliorates this problem by
utilizing the context information from the expanded pro-
posal. The second, fourth and fifth columns in Figure 4
provide illustration of these cases.

4.2. Human Pose Estimation

In this section, we apply our method to another challeng-
ing task, human pose estimation. We show that our design
generalizes well and can benefit different tasks that require
bounding box detection.

Dataset We carry out experiments on the COCO keypoint
dataset [23], which requires both accurate human instances
detection and precise human keypoints localization. The
training set contains over 100K human instances with over
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Figure 5: Keypoint detection results compared with Mask R-CNN.

test-dev AP kp AP kp
50 AP kp

75 AP kp
M AP kp

L

Mask R-CNN 62.7 87.0 68.4 57.4 71.1
Ours 64.6 87.0 71.7 60.2 72.3

(a) Results on COCO test-dev

val-2017 AP kp AP kp
50 AP kp

75 AP kp
M AP kp

L

Mask R-CNN 64.2 86.4 69.9 58.5 73.4
Ours 66.1 86.5 72.6 61.8 74.1

(b) Results on COCO val-2017

Table 2: Results of keypoint detection on COCO test-dev and val-2017. Both use ResNet-50-FPN as the backbone network.
AP kp is AP under keypoint metric. APbox is the AP for box detection (person only).

1 million labeled keypoints. The testing set consists of
roughly 80000 human instances, and is equally divided into
four subsets, namely test-challenge, test-dev, test-standard
and test-preserved.

Implementation details As in [15], we perform some mi-
nor modifications to adapt to the pose estimation task.
Specifically, the keypoint location is represented by a one-
hot mask, and we require the prediction branch to predict
a K-channel mask, each channel for a kind of keypoints
(e.g. left wrist, right knee). The network N within the TOP
module follows the same changes in [15]. It now consists
of eight 3x3 convolution layers with 512 channels and a de-
conv layer. An extra 2x bilinear upsampling layer is added
to increase the resolution. The final resolution for T is
56×56. Note the resolution for the indicator is still 28×28.
The architecture of prediction branch is similar to N but
doubles the number of convolutional layers. The resolution
for the final prediction is 112× 112.

Results We report results on the “test-dev” and “val-2017”
subsets in Table 2. Our method outperforms Mask R-CNN

by a large margin (close to 2 mAP). We notice the improve-
ment on a high threshold is much larger than the improve-
ment on a low one (3.3 point on AP kp

75 vs. 0 ∼ 0.1 point
on AP kp

50 ). The difference again comes from correcting the
failure cases, which were originally regarded as correct on
the low threshold.
Qualitative Results Results of our method and Mask R-
CNN are shown in Figure 5. Our method manages to find
and locate keypoints that are missed by Mask R-CNN.

5. Ablation Studies
In this section, we perform exhaustive ablation studies

to analyze the proposed method in detail. Note that the ex-
periments are conducted on the instance segmentation task.
For results on the pose estimation part, please refer to the
supplementary file.

We use ResNet-50-FPN as the backbone network
throughout all experiments and results on val-2017 are re-
ported. Note that we slightly change the training settings to
save time cost. Specifically, the number of RoIs per image



val-2017 AP AP50 AP75 APS APM APL

baseline 31.3 52.1 32.9 12.8 33.6 47.5
full-model 32.5 52.9 34.7 13.1 34.5 50.1
(a) w/o TOP module 29.4 50.1 30.4 12.0 31.4 45.1
(b) w/o context 31.7 52.3 33.4 12.9 33.9 48.9
(c) w/o auxiliary loss 31.8 52.0 33.7 12.8 33.5 48.7
(d) box indicator 31.5 52.1 33.1 12.8 33.6 48.2
(e) MultiPath [37] 30.4 50.9 31.6 12.7 32.6 46.2

Table 3: Ablation studies on val-2017. baseline and full-
model are Mask R-CNN and TOPNet respectively. w/o X
means removing component X. box indicator uses a rectan-
gular mask as the indicator. MultiPath adopts the method in
[37] to incorporate context.

is reduced from 512 to 128 and the total iteration is reduced
from 90k to 45k. The learning rate decreases by a factor of
10 at the 30k and 40k iteration. Although the precise num-
ber is different from the complete version, the improvement
tendency is consistent and thus quite desirable.

TOP module: We first study the influence of the TOP mod-
ule. We remove it from the pipeline and directly train a
model on the expanded proposal. This experiment is de-
noted as w/o TOP module and the result is reported on Table
3(a). We observe a significant performance decrease (close
to 2 mAP) compared to the Mask R-CNN baseline, due to
the ambiguity issue introduced by expanding the proposal.
Incorporating the TOP module can greatly ease this prob-
lem and leads to better performance.

Context: We then investigate the effect of context informa-
tion. In this experiment, we keep the attention module but
do not perform inference on the expanded proposal, which
reduces our method to a simple refinement process. The ex-
periment is denoted as w/o context and the result is reported
on Table 3(b). As we can see, a small improvement (0.3
mAP) over the baseline is achieved, due to the refinement
process. But still, it’s not compatible with the full-model
(0.8 mAP less), which benefits from employing the context
information.

Auxiliary loss: We further analyze the impact of auxiliary
loss. We remove the auxiliary loss and automatically learn
the attention map without any specific requirement. This
experiment is denoted as w/o auxiliary loss and result is re-
ported on Table 3(c). Without the auxiliary loss, the per-
formance drops about 0.7 mAP. But still, it performs better
than the baseline (0.5 mAP improvement).

Indicator’s form: We also investigate the influence of the
indicator’s precise form. We experiment with the one used
in [26] that directly uses bounding box to generate a rect-
angular mask. This experiment is denoted as box indicator
and the result is reported on Table 3(d). We can see it only
performs compatible with the baseline and is much worse

than our method (1 mAP less). This experiment also proves
our strategy for learning the indicator is effective, since [26]
doesn’t involve with any learning process of the indicator.
Inference on the expanded proposal: Here we study the
influence of the precise method of performing inference on
the expanded proposal. We compare our method with Mul-
tiPath [37] which also uses expanded proposal for infer-
ence. Different from our method, it directly concatenates
features from the local proposal with features from the ex-
panded proposal to obtain the final prediction. The result
is reported on Table 3(e). We observe a significant perfor-
mance decrease (2.1 mAP) between [37] and our method,
because [37] doesn’t preserves the spatial relationship be-
tween the local proposal and the expanded proposal, while
our method does. This also proves the effectiveness of the
TOP module.
Comparison with iterative methods: We also provide
comparison with iterative methods [21, 4]. We adopt the
standard setting in [21, 4] — augmenting the input image
with the output mask and running the entire network multi-
ple times — and set the total iteration step to be 2 for a fair
comparison. The results and inference time are reported
in Table 4. As we can see, our method is about 2x faster
than the iterative counterpart, since we only need to run the
network once. This advantage becomes more obvious as
the total iteration step increases. Note that our method also
achieves better performance (0.5 mAP), thanks to the end-
to-end training schema.

val-2017 AP AP50 AP75 APS APM APL time cost
Iterative 32.0 52.2 34.0 13.0 34.1 49.3 0.442s
Ours 32.5 52.9 34.7 13.1 34.5 50.1 0.243s

Table 4: Comparison with iterative method. The first row is
the result of iterative method with total iteration 2 and the
second row is the result of TOPNet. The time cost here is
the inference time for one image.

6. Conclusion
In this paper, we investigated two common problems in

proposal-based frameworks, i.e. incomplete prediction and
wrong prediction. We showed that expanding the proposal
could greatly alleviate these problems, but cares must be
taken to avoid breaking the ‘one proposal-one instance’ as-
sumption. A novel attention module, namely TOP mod-
ule, was proposed to address the crucial ambiguity issue. It
could be readily incorporated into existing proposal-based
frameworks to allow the inference on the expanded pro-
posal. The augmented method, which we called TOPNet,
achieved significant improvement over the original frame-
work. Experiments on instance segmentation and human
pose estimation demonstrated the effectiveness and gener-
ality of our method.
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