
Post-NMS Training Strategy for Object Detection

Lu Qi ∗
The Chinese University of Hong Kong

Shuqin Xie ∗
Shanghai Jiao Tong University

Shu Liu
Youtu Lab, Tencent

Jiaya Jia
Youtu Lab, Tencent

Yue Zhou
Shanghai Jiao Tong University

Abstract

Object detection algorithms have achieved excellent performance while training still
does not involve the final non-maximal suppression (NMS) to remove unnecessary
proposals. We note intriguingly final proposal removal, albeit seemingly subtle
and straightforward, actually finds a lot of room to improve and affects overall
performance. In this paper, we propose a post-NMS training strategy to directly
perform optimization upon results of NMS. Our method, after predicting proposals
and their classes, groups proposals into a set of clusters during NMS. We then
make the important design to infer the best proposals by integrating all information
within clusters. We call it post-NMS learning that models inter- and intra-cluster
relationship. Our method makes it possible to incorporate NMS into an end-
to-end training framework. Experiments on the challenging MSCOCO object
detection tasks yield consistent improvement when using various object detection
frameworks. Our method achieves 43.9 mAP even with one single model.

1 Introduction

Object detection is a fundamental task in computer vision and was extensively researched. Proposal-
based top-down methods [1, 2, 3, 4, 5, 6, 7] have been dominant in this field. Recently, proposal-
free bottom-up methods [8, 9, 10], which directly regress object location, also achieve excellent
performance.

Non-maximal suppression (NMS) is an essential step in almost all object detection algorithms to
reduce the vast amount of redundant detection results during the course of inference. On the one
hand, it is generally not considered during training because the common strategy is to sample a set
of foreground and background proposals in all possible locations to train the network, regardless
of the NMS step. Though it works well thanks to the carefully designed sampling strategy, there is
still much room for improvement since this type of training only optimizes on an intermediate result
rather than the final one used for evaluation. On the other hand, some recent work [11, 12] replaces
NMS with a neural network. They usually result in more complicated network structures and extra
computation, which may slow down object detection.

In this paper, we follow a completely different line to introduce post-NMS training, which directly
trains the network on NMS output. The major benefit is to integrate NMS into the training stage with
rather limited computational overhead. The key is to formulate NMS as a dynamic clustering process,
where at each step a most confident proposal is chosen to group a set of proposals into a single cluster.
This format perfectly solves the essential problem of training on sparse signals when directly using
NMS output. Meanwhile, maintaining the entire cluster provides rich information than keeping just
one single proposal, making it possible to further improve result quality by utilizing vastly helpful
context information.

∗Authors contributed equally to this paper.



Our whole system can built on anchor-based detection frameworks [13, 3] with NMS. We only need to
modify NMS by taking resulting proposals as input and outputting a set of clusters. The key module is
to recompute these objectness scores for each cluster given categories. This is achieved nicely in our
system with a decoupling layer to separate this module from previous steps, a classification network
to evaluate objectness scores given the class categories, and a localization network to further refine
the box location. A class-encoding feature is proposed to model the condition under a specific class.
The detailed cluster-based learning involves an inter-cluster learning branch to enforce integration of
information within the entire cluster and merge close clusters, and an intra-cluster learning branch
accounting for importance values for different proposals within a cluster and addressing the problem
of sparse supervision signals.

Our method finally accomplishes NMS in an end-to-end training framework. Experiments on
MSCOCO object detection task demonstrates the surprising effectiveness of our method where we
observe consistent improvement when using various popular detection frameworks with different
backbones. Extensive ablation studies are provided for detailed analysis of the proposed method.

2 Related Work

Anchor-based Object Detectors Anchor-based top-down methods are popular in object detection
[1, 2, 3, 14, 15, 16, 17, 18], while keypoint based methods [8, 19, 9, 10, 20] emerge recently.
Contemporary anchor-based approaches mostly fall into two categories, i.e., the two-stage and
single-stage paradigms. Improvement of two-stage detectors stem from the development of proposal
generation and RoI feature extraction in series of R-CNN [1, 2, 3]. Proposals are first generated from
anchors and then sampled for further discrimination and localization. Recent works [21, 15, 18, 4, 22]
modify either architecture [21, 15, 18] or pipeline [4, 22] to further improve performance. As the
representation of single-stage pipeline, YOLO [7], SSD [6] and RetinaNet [5] directly classify and
regress anchors for high inference speed. For all these methods, our method can be easily applied to
further boost up performance with little computation overhead.

Duplicate Removal Duplicate removal aims to eliminate highly overlapped detection results and
only retain the most accurate bounding box for each object. NMS [23] is the most popular method
due to its simplicity and efficiency. Regarding its variants, instead of suppressing all non-maximum
bounding boxes, SoftNMS [24] keeps them according to the degree of overlap with “key” boxes.
Different from SoftNMS, box-voting [13, 25] renew the “key” boxes by grouping all their highly-
overlapped neighborhood. These methods only consider the score and location of each bounding box,
which do not provide strong information to determine the final bounding boxes.

Recent works on duplicate removal uses convolutional neural network to help final selection among
the large number of proposals. In [11, 12], learning NMS is achieved with elaborate network design.
In [26, 27], NMS and box-voting are provided with an extra localization confidence score for further
refinement. Relation network [17] is the first one to completely abandon NMS but still encounters
problem of extreme imbalance between positive and negative samples.

Refinement Module Some recent works improve performance by cascading modules [4, 28] or
changing sampling strategies [29, 30, 31]. They all follow the ‘coarse-to-fine’ detection pipeline to
filter out most of the simple background windows and then process those more difficult proposals
[12]. In contrast, our method pays more attention to proposals used for final evaluation and uses the
entire cluster for training.

3 Our Approach

Our method is built on object detection framework with a novel post-NMS stage, illustrated in Figure
1. We start with brief introduction of the pre-NMS operations, followed by viewing NMS as dynamic
clustering. Then we explain the post-NMS stage, which is our focus.

3.1 Before NMS

Before NMS, similar to most anchor-based object detection algorithms [2, 3, 15] we use a classifica-
tion branch to evaluate existence of objects and a localization regression branch to predict location of
the object. During training, it randomly samples a set of foreground and background proposals and

2



Inter-Cluster
Learning

Pre-NMS Stage Post-NMS StageNMS

Intra-Cluster
Learning

P2

P3

P4

P5

C2

C3

C4

C5
P2

P3

P4

P5

D2

D3

D4

D5

Decoupling Layer

Class Encoding Feature

Gradient Flow

Figure 1: Illustration of our end-to-end object detection framework. (a) Prior to NMS stage, proposals
are generated by Faster R-CNN with FPN backbone. C and P denote different feature map levels
in ResNet and FPN. (b) NMS stage uses the most confident boxes (yellow ones) to group close
proposals (blue ones) into clusters. Representative boxes (green ones) are generated to represent
clusters. (c) Post-NMS stage uses the decoupling feature D and class-encoding features to perform
classification and localization. Intra- and inter-cluster learning are introduced to make the cluster
more compact and merge close clusters. The dots in the right most image represent centers of boxes
where red ones are ground truth and the other colors (yellow, blue and green) corresponds to boxes
described before.

computes classification and localization loss on these proposals. The classification loss is computed
by Lcls =

∑N
i − log pi where pi is the probability on the true class label. The localization loss is the

commonly used smoothed-L1 loss in [2]. It is also possible to cascade multiple stages by gradually
changing the foreground threshold [4].

3.2 NMS as Dynamic Clustering Process

Prior to delving into the detail of our main post-NMS stage, we discuss how the NMS algorithm
can be explained as a dynamic clustering process. The most common understanding of NMS is
that at each step, the algorithm greedily chooses the most confident proposal and eliminates boxes
close to it. From another view, at each step, the algorithm uses the most confident proposal to group
a set of proposals into a cluster. The cluster here is defined as a set of proposals whose IoU with
its most confident proposal are larger than a threshold. The clustering understanding here allows
us to successfully address the crucial problem of sparse training signals in the following important
post-NMS stage.

3.3 Post-NMS Stage

This stage is new to directly perform optimization on output of NMS. It takes as input a set of clusters
and outputs a set of proposals. The basic operation unit is a cluster. We detail our design regarding
modeling, learning strategy and inference in what follows.

3.3.1 Modeling

Modeling post-NMS consists of three components: a decoupling layer to separate this module from
previous proposal generation, a classification network to compute the objectness score given class
K, and a localization network to refine box location.

Decoupling Layer The objectives for our post-NMS stage and operations before it are different.
The proposal generation is to optimize results regarding each proposal while our post-NMS is to
update results in terms of each cluster. Since the mechanisms are different, it is beneficial to separate
them, as validated in our experiments. We let features generated before NMS be Fpre and features in
our post-NMS stage be Fpost. Fpost can be represented as Fpost = Γ(Fpre), where Γ is a function

3



parameterized by the decoupling layer. In this paper, we take the backbone feature (e.g. FPN feature)
as Fpre and a 3× 3 convolution layer with 256 channels for the decoupling layer. Its output is Fpost.

Classification and Localization Networks After decoupling, we introduce small-scale classifi-
cation and localization networks to re-compute objectness score and refine localization for each
cluster.

Recall that in common proposal generation frameworks of object detection by [2, 3, 4], the class
probability for a proposal is computed by a softmax function as

p(K = k) =
ezk∑C
i e

zi
, (1)

where C is the total number of classes and zk is the logit for class k. Also in the NMS stage, for a
class K, the algorithm maintains proposals whose class probabilities on K are larger than a threshold.

We note it is valid for one proposal to be assigned to multiple categories in our configuration because
one position could have multiple objects when heavy occlusion arises. However, the above softmax
function makes different categories compete and lower some scores, which does not allow multi-
category high scores to happen. In addition, decrease of scores also influences mAP, since proposals
with low scores are put to the latter position regarding the evaluation metric. These facts indicate
that the softmax function is not suitable in our post-NMS framework. We instead propose a binary
classification network to compute the conditional probability of objectness given a class k, denoted as

p(obj = 1|K = k).

Inspired by the thought in [32, 17, 12], the condition of K = k is encoded into a class-encoding
vector Fk that has the same number of channels as Fpost. Each dimension of Fk is computed as

F(k,2i) = sin(k/10002i/d)

F(k,2i+1) = cos(k/10002i/d)

where k is the class, i is the dimension and d is a constant value. Each dimension of class-encoding
Fk corresponds to a sinusoid. This formulation ensures each class is encoded into a unique vector.
Therefore, the conditional probability of objectness given class k is computed by

p(obj = 1|Fr, Fk;W ), (2)

where Fr is RoI feature extracted from Fpost and Fk is class-encoding feature. W is the weight of
the network.

3.3.2 Learning Strategy

We discuss the learning strategy in this section. Since this stage takes clusters as input, we consider
learning based on clusters. Specifically, we use inter-cluster learning to differentiate among clusters
and intra-cluster learning to model various importance of proposals within a cluster.

Inter-cluster Learning We consider the relationship between different clusters. Intuitively, at the
beginning of training phase, there are a lot of clusters and only a few proposals for each cluster.
During the course of training, the number of clusters reduces and more proposals for each cluster are
generated. Put differently, clusters gradually merge. This is an inherent property since the learning
procedure is still based on each individual proposal.

To further enhance it, we propose inter-cluster learning that accumulates all information within a
cluster so that the algorithm is forced to consider a cluster. We compute a representative box br for
cluster C using function f to accumulate all proposals within the cluster, that is, br = f(C). f is
flexible as long as it summarizes the cluster information. For simplicity, we use union for f and br is
computed by

btlr = min
b∈C

btl, bbrr = max
b∈C

bbr, (3)

where btl and bbr are the bounding box top-left and bottom-right corner locations. Then br is fed into
the classification and localization networks to further merge close clusters and decrease scores of
non-object clusters, reducing false positives. A cluster C with category K is considered positive if
max
b∈C

IoU(b, gtK) > 0.5 where gtK is the ground truth annotation on class K. Otherwise, a negative

4



label is assigned. The box regression target is only assigned when C is considered positive and is
computed following the method of [2].

Intra-cluster Learning We further consider varying importance of proposals within a cluster. We
expect the most confident and precisely localized proposals are more important than the rest. To
this end, we propose an importance sampling strategy to assign different weights to proposals. The
importance for the i-th proposal is defined as

wi
cls =

IoU[i]
max(IoU)

, wi
loc =

score[i]
max(score)

,

where subscripts cls and loc indicate the classification and the localization branches respectively. The
final losses for cluster C are given by

Lcls =
∑
i

wi
clsL

i
cls, Lloc =

∑
i

wi
locL

i
loc,

where Li
cls is the binary cross entropy loss and Li

loc is the smoothed-L1 loss on the i-th proposal.
The class label and matched ground truth for each proposal are identical to the cluster’s.

This sampling strategy assigns larger weights to proposals with higher IoUs, forcing the classification
branch to focus on them and increase their scores. So does the localization branch where more
attention is drawn to those with higher scores. Another benefit is that it unifies classification and
localization. The weights for classification branch depends on the regression result and vice versa.
In this way, we connect them and make proposal suppression performs more accurately, leading to
superior performance.

Note that our sampling strategy is different from those used in pre-NMS methods [2, 3] where the
latter only considers proposals with IoU > 0.5 as positive samples. Our cluster-based sampling
strategy contrarily assigns positive labels to proposals with IoU < 0.5, as long as their cluster is
considered positive. This manifests that our method makes use of richer supervision signals.

Finally, this sampling strategy does not have the problem of sparse supervision signals when training
on NMS output. Note that the conventional understanding of NMS will only keep a few proposals
and that number is too small to train a network. Adopting the clustering explanation addresses this
problem by keeping all proposals within a cluster and using them to train the network. In this way,
much more supervision signals are provided and the problem of sparse training signal is addressed. T

3.4 End-to-End Framework

Training The design of our post-NMS module makes it easy for joint training the whole system for
object detection. We define the overall loss for our framework as

L = αLpre + βLpost,

where α is the weight for loss Lpre before proposal suppression and β is the weight for post-NMS
stage loss Lpost. Note that Lpost is computed by Lpost = 1

N (Lcls + Lloc) and N is the number of
proposals for this stage. Since NMS has eliminated most of background proposals, Lpost mainly
focuses on foreground proposals and is more difficult to optimize, resulting in much larger loss than
Lpre. To address this issue, we set α to 1 and β to num(bk)

num(ba)
where bk denotes the boxes kept after

suppression and ba denotes the boxes before it. This term balances the loss in the two stages.

Inference At inference stage, for each cluster, we choose the most confident proposal and re-compute
its objectness score and location. The final score is computed as

s = worisori + wclusclu + wobjsobj ,

where (wori, wclu, wobj) are the weights for its original score sori, its cluster score sclu and objectness
score sobj . In our experiments, we set (wori, wclu, wobj) to (0.8, 0.1, 0.1). The final box localization
is computed using localization network’s prediction.

4 Experiments

We conduct experiments on the challenging MSCOCO [33] object detection task to verify the effec-
tiveness of our method. We apply our method to several popular detection frameworks, including both

5



two-stage methods (Faster R-CNN [3] and Cascade R-CNN [4]) and one-stage method (RetinaNet
[5]). We also make comparison with other NMS methods regarding the way to suppress proposals.

Dataset MSCOCO [33] dataset is a popular large-scale benchmark in object detection. Heavy
occlusion and complex scenes make it very challenging. It labels 80 object categories and contains
7.7 instances per image. The training set train-2017 split contains 115k images and the validation
set val-2017 split has 5k images. Ground truth annotation on these two subsets are available. The
test set test-dev split consists of 20k images with no annotation provided. Results are reported under
standard COCO-style AP metric, which averages mAP across different IoU thresholds (ranging from
0.5 to 0.95 with interval 0.05).

Implementation Details We use the train-2017 subset to train models and test them on the test-dev
subset. Without specially noted, we train the network with 90k iterations on 8 NVIDIA TITAN X
Pascal GPUs. The batchsize is 16 and the learning rate starts from 0.02 and decays by a factor of 0.1
on iterations 60k and 80k. The momentum is set to 0.9.

Framework Backbone AP AP 50 AP 75 APS APM APL

Faster R-CNN [3]
ResNet-50-FPN 38.4(+1.9) 58.3 41.8 21.6 41.4 51.2

ResNet-101-FPN 40.6(+1.7) 60.3 44.2 23.0 43.9 53.9
ResNeXt-101-FPN 42.5(+1.5) 63.2 46.7 25.2 46.3 55.6

RetinaNet [5]
ResNet-50-FPN 37.2(+1.3) 55.7 40.5 20.3 40.2 49.3

ResNet-101-FPN 38.9(+1.3) 59.8 41.7 22.1 42.4 50.7
ResNeXt-101-FPN 40.2(+1.2) 59.8 43.6 22.7 43.4 53.3

Cascade R-CNN [4] ResNet-101-FPN (3) 42.9(+0.8) 61.1 46.2 23.6 45.5 55.3
ResNet-101-FPN (1 ∼ 3) 43.4(+0.6) 62.0 46.5 23.9 45.9 56.5

Table 1: Performance comparison with state-of-the-art methods after applying post-NMS stage for
training. Results on test-dev split are reported. The content in bracket denotes performance gains
over their baseline counterparts.

Results on Detection We report results on the test-dev split in Table 1, where we achieve consistent
improvement over different detection frameworks with various backbones. For two-stage methods,
We improve Faster R-CNN with 1.9, 1.7 and 1.5 mAP respectively for ResNet-50-FPN, ResNet-101-
FPN and ResNeXt-101-FPN backbones. For one-stage methods, we boost RetinaNet by 1.3, 1.2 and
1.3 mAP respectively for the same three backbones.

We also improve the very strong baseline Cascade R-CNN by 0.6 mAP. We note that Cascade R-CNN
reach its performance ceiling after stacking 3 stages, as pointed out in [4]. So the improvement here
does not stem from using an extra stage, and instead comes from our cluster-based sampling strategy.
Using all information within the entire cluster for inference also helps.

Method AP AP 50 AP 75 APS APM APL AR1 AR10 AR100

NMS [23] 36.7 58.4 39.5 21.0 40.1 48.0 30.5 48.0 50.4
Box-Voting [13] 37.1 58.4 40.3 21.1 39.9 48.4 30.8 48.4 50.9
Soft-NMS [24] 37.5 58.4 41.3 21.4 40.1 48.9 30.5 51.9 57.2
IoU-NMS [26] 37.6 56.2 40.9 20.5 41.8 47.4 31.5 50.2 51.8
Softer-NMS [27] 38.0 57.8 41.3 21.2 42.3 47.9 31.1 50.4 52.3
SCE [12] 37.9 58.0 41.2 20.9 42.5 47.9 31.3 49.0 52.1
Ours 38.6 58.2 41.9 21.6 41.6 51.4 32.1 50.5 53.1

Table 2: Comparison with other NMS methods on the val-2017 subset. All use ResNet-50-FPN as
the backbone.

Comparison on Suppression Strategies We compare our method with other proposal suppression
methods [23, 13, 24, 26, 27, 12] and report results in Table 2. Our method yields the best performance.
Compared to the heuristic methods such as Box-voting [13] and Soft-NMS [24], we effectively utilize
proposals’ features for proposal suppression rather than exploiting only scalars of location and scores.
Compared to learning-based methods, such as IoU-NMS [26] and Softer-NMS [27], our method pays
more attention to the most important proposal within a cluster rather than treating them similarly
important. Compared to SCE [12], our method is much simpler and can be easily integrated into
existing frameworks for end-to-end training, which is however impossible for [12].

6



5 Ablation Studies

We perform extensive ablation studies to evaluate usefulness of each component in our method. We
report results on both NMS stage and post-NMS stage, which reflects post-NMS stage’s influence
over previous one. Results on val-2017 subset are reported in Table 3.

NMS post-NMS AP AP 50 AP 75 APS APM APL

baseline X 36.7 58.4 39.5 21.0 40.1 48.0

w/o DCL X 34.5 54.9 37.4 18.4 36.6 46.7
X 36.0 57.6 38.3 19.5 37.2 48.0

w/o CEF X 36.7 58.3 39.5 21.0 40.1 48.1
X 37.9 57.6 41.3 21.1 40.3 50.3

w/o IRC X 36.5 57.5 39.7 20.5 38.9 48.0
X 38.2 57.6 41.7 21.2 40.6 50.7

w/o IAC X 36.6 58.0 39.8 20.2 39.2 48.3
X 36.9 58.2 39.9 20.4 39.5 48.5

full model X 37.0 58.3 39.6 21.0 40.3 48.5
X 38.6 58.2 41.9 21.6 41.6 51.4

+1.9 -0.2 +2.4 +0.6 +1.5 +3.4
Table 3: Ablation study results on val-2017 subset. We compare our full model with Faster R-CNN
ResNet-50-FPN baseline. w/o X means removing X from the full model and X could be DCL
(decoupling layer), CSF (class encoding feature), IRC (inter-cluster learning) and IAC (intra-cluster
learning). The last row is the overall improvement of full model over the baseline.

Decoupling Layer Removing the decoupling layer (w/o DCL) causes notable performance drop
(about 2.5 mAP for both NMS and post-NMS settings). It is even worse than the baseline (2.2 mAP
less). This demonstrates the necessity of separating post-NMS stage’s feature from other modules,
considering its unique objective.

Class Encoding Feature Removing the class encoding feature (w/o CEF) degrades the post-NMS
stage into an class-agnostic refinement stage, which leads to 0.7 mAP performance decrease. This
indicates the strong class prior introduced by class encoding feature is actually beneficial.

Inter-cluster Learning Removing inter-cluster learning (w/o IRC) also affects the performance
by 0.4 mAP. This procedure integrates information within the cluster. We test different integration
strategies, where we compute union, intersection and average of all proposals within a cluster. We
also experiment with box-voting [13]. Results are reported in Table 4. Using the union box achieves
the best performance, which suggests incorporating more context is useful for final performance.

Intra-cluster Learning Removing the intra-cluster learning (w/o IAC) degrades performance by
1.7 mAP. The gap is caused by the sparse supervision signal problem where introducing intra-cluster
learning addresses it. We also analyze the impact of importance sampling strategy by exploring
different sampling strategies: normal for independent classification and localization loss, wcls only
for localization-aware classification loss only, wloc only for score-aware localization loss only, and
all for both terms. Results are reported in Table 5. The all setting achieves the best performance. It is
much better than the normal setting (with 1.1 mAP improvement), manifesting the importance of this
design.

inter avg box-voting union
AP 37.9 38.2 38.2 38.6
AR 52.0 52.1 52.3 53.1

Table 4: Results of inter-cluster learning.

normal wcls only wloc only all
AP 37.5 38.1 38.4 38.6
AR 51.9 52.2 52.9 53.1

Table 5: Results of intra-cluster learning.

Inference Finally, we investigate the influence of information fusion at inference phase. We vary
the weight terms and steps for re-scoring and re-localization, and report results in Table 6. The
re-localization in post-NMS stage improves the box quality a lot because it makes the cluster more
compact. Using weights of (0.8, 0.1, 0.1) yield the best performance.

7



wo wc wi Re-locate AP wo wc wi Re-locate AP
1.0 0.0 0.0 × 37.0 1.0 0.0 0.0 X 38.1
0.0 1.0 0.0 X 33.4 0.0 0.0 1.0 X 36.2
0.8 0.1 0.1 × 36.6 0.8 0.1 0.1 X 38.6

Table 6: Results of different ways of information fusion at inference phase. Re-locate means using
post-NMS stage’s localization branch to refine the box.

6 Quantitative Analysis

We provide quantitative analysis in this section. More are in the supplementary file.

For each cluster, we record the following variables: KeyIoU, MaxIoU, and AvgIoU. KeyIoU is IoU
of its most confident proposal with its matched ground truth. MaxIoU and AvgIoU is the maximal
and average IoU among all proposals in the cluster respectively. We compute these variables in both
before post-NMS stage and after post-NMS stages, denoted by suffix ‘_Pre’ and ‘_Post’. A histogram
of these variables is drawn in Figure 2. The horizon axis marks IoU intervals ranging from 0 to 1
with step 0.05. The vertical axis labels the total number of X within the interval, where X represents
KeyIoU, MaxIoU, and AvgIoU.

Figure 2: Histogram of IoU statistics. Horizon axis denotes different IoU intervals ranging from 0 to
1 with step 0.05. Verical axis labels the counting of variables within the interval. The legend in the
top right corner denotes differnt variables.

The figure shows that KeyIoU_Post are consistently larger than KeyIoU_Pre in the IoU intervals
of 0.5 to 1 and consistently smaller than KeyIoU_Pre from intervals of 0 to 0.5. This means the
post-NMS stage can effectively improve the box quality and reduce the number of low-quality
proposals. The MaxIoU term also gains similar improvement where MaxIoU_Post are usually larger
than MaxIoU_Pre.

Note that AvgIoU_Post are significantly larger than AvgIoU_Pre on high IoU intervals (from 0.8
to 0.9). This is because the post-NMS stage works on units of clusters, making information more
compact than that on individual proposals.

7 Conclusion

We have presented a novel post-NMS training strategy to directly perform optimization upon result
of NMS, which manages to integrate NMS into training course. It yields a number of new advantages
compared with previous solutions. Instead of choosing the most appropriate bounding boxes, we unify
information within clusters and refine the key results with our special design including decoupling
layer and class-specific features with inter- and intra-cluster learning. Extensive experiments and
ablation studies were conducted and the consistent improvement manifests the effectiveness of our
approach over different state-of-the-art backbone frameworks. New high is achieved on all of them.
Other information fusion strategies will be explored in our future work.

8



References
[1] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In CVPR, 2014.

[2] Ross B. Girshick. Fast R-CNN. In ICCV, 2015.

[3] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time
object detection with region proposal networks. In NIPS, 2015.

[4] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: delving into high quality object detection.
In CVPR, 2018.

[5] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In ICCV, 2017.

[6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[7] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In CVPR, 2016.

[8] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 734–750, 2018.

[9] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-stage object
detection. In arXiv, 2019.

[10] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. In arXiv, 2019.

[11] Jan Hendrik Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum suppres-
sion. In CVPR, 2017.

[12] Lu Qi, Shu Liu, Jianping Shi, and Jiaya Jia. Sequential context encoding for duplicate removal.
In NeurlPS, 2018.

[13] Spyros Gidaris and Nikos Komodakis. Object detection via a multi-region and semantic
segmentation-aware cnn model. In CVPR, 2015.

[14] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. PAMI, 2010.

[15] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J.
Belongie. Feature pyramid networks for object detection. In CVPR, 2017.

[16] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.
Deformable convolutional networks. In ICCV, 2017.

[17] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks for object
detection. In CVPR, 2017.

[18] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network for instance
segmentation. CVPR, 2018.

[19] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krähenbühl. Bottom-up object detection by grouping
extreme and center points. In CVPR, 2019.

[20] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Centernet:
Keypoint triplets for object detection. In arXiv, 2019.

[21] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: object detection via region-based fully
convolutional networks. In NIPS, 2016.

[22] Francisco Massa and Ross Girshick. maskrcnn-benchmark: Fast, modular reference imple-
mentation of Instance Segmentation and Object Detection algorithms in PyTorch. https:
//github.com/facebookresearch/maskrcnn-benchmark, 2018. Accessed: [Insert date
here].

9

https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark


[23] Alexander Neubeck and Luc J. Van Gool. Efficient non-maximum suppression. In ICPR, 2006.

[24] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S. Davis. Soft-nms - improving
object detection with one line of code. In CVPR, 2017.

[25] Shu Liu, Cewu Lu, and Jiaya Jia. Box aggregation for proposal decimation: Last mile of object
detection. In CVPR, 2015.

[26] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yuning Jiang. Acquisition of localiza-
tion confidence for accurate object detection. In ECCV, 2018.

[27] Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu Zhang. Bounding box
regression with uncertainty for accurate object detection. In CVPR, 2019.

[28] François Fleuret and Donald Geman. Coarse-to-fine face detection. International Journal of
Computer Vision, 2001.

[29] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In CVPR, 2016.

[30] Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng, Wanli Ouyang, and Dahua Lin. Libra
R-CNN: towards balanced learning for object detection. arXiv: 1904.02701, 2019.

[31] Yuhang Cao, Kai Chen, Chen Change Loy, and Dahua Lin. Prime sample attention in object
detection. arXiv:1904.04821, 2019.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,
2014.

10


	Introduction
	Related Work
	Our Approach
	Before NMS
	NMS as Dynamic Clustering Process
	Post-NMS Stage
	Modeling
	Learning Strategy

	End-to-End Framework

	Experiments
	Ablation Studies
	Quantitative Analysis
	Conclusion

